Neutron flux

The neutron flux is a quantity used in nuclear reactor physics corresponding to the total length travelled by all neutrons per unit time and volume [1]. The neutron fluence is defined as the neutron flux integrated over a certain time period.

Contents

Natural neutron flux

Neutron flux in asymptotic giant branch stars and in supernovae is responsible for most of the natural nucleosynthesis producing elements heavier than iron. In stars there is a relatively low neutron flux on the order of 105 to 1011 neutrons per cm2 per second, resulting in nucleosynthesis by the s-process (slow-neutron-capture-process). By contrast, after a core-collapse supernova, there is an extremely high neutron flux, on the order of 1022 neutrons per cm² per second, resulting in nucleosynthesis by the r-process (rapid-neutron-capture-process).

Artificial neutron flux

Artificial neutron flux refers to neutron flux which is man-made, either as byproducts from weapons or nuclear energy production or for specific application such as from a research reactor or by spallation. A flow of neutrons is often used to initiate the fission of unstable large nuclei. The additional neutron(s) may cause the nucleus to become unstable, causing it to decay (split) to form more stable products. This effect is essential in fission reactors and nuclear weapons.

Within a nuclear fission reactor the neutron flux is primarily the form of measurement used to control the reaction inside. The flux shape is the term applied to the density or relative strength of the flux as it moves around the reactor. Typically the strongest neutron flux occurs in the middle of the reactor core, becoming lower toward the edges. The higher the neutron flux the greater the chance of a nuclear reaction occurring as there are more neutrons going through an area.

References

  1. ^ Rudi J. J. Stamm'ler, Máximo Julio Abbate, Methods of steady-state reactor physics in nuclear design

See also